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The delineation of resting state networks (RSNs) in the human brain
relies on the analysis of temporal fluctuations in functional MRI
signal, representing a small fraction of total neuronal activity. Here,
we used metabolic PET, which maps nonfluctuating signals related
to total activity, to identify and validate reproducible RSN topo-
graphies in healthy and disease populations. In healthy subjects,
the dominant (first component) metabolic RSN was topographi-
cally similar to the default mode network (DMN). In contrast, in
Parkinson’s disease (PD), this RSN was subordinated to an indepen-
dent disease-related pattern. Network functionality was assessed
by quantifying metabolic RSN expression in cerebral blood flow
PET scans acquired at rest and during task performance. Consistent
task-related deactivation of the “DMN-like” dominant metabolic
RSN was observed in healthy subjects and early PD patients; in
contrast, the subordinate RSNs were activated during task perfor-
mance. Network deactivation was reduced in advanced PD; this
abnormality was partially corrected by dopaminergic therapy.
Time-course comparisons of DMN loss in longitudinal resting meta-
bolic scans from PD and Alzheimer’s disease subjects illustrated that
significant reductions appeared later for PD, in parallel with the
development of cognitive dysfunction. In contrast, in Alzheimer’s
disease significant reductions in network expression were already
present at diagnosis, progressing over time. Metabolic imaging can
directly provide useful information regarding the resting organiza-
tion of the brain in health and disease.

default mode network | resting state networks | PET |
principal component analysis | neurodegeneration

The persistence of local brain function in the absence of fo-
cused cognitive activity has attracted much interest over the

past decade (1–3). Functional MRI (fMRI) is the most com-
monly used method to identify resting-state functional brain
networks (RSNs), particularly the default mode network (DMN).
Because of the spatiotemporal complexity of resting-state fMRI
recordings, the extraction of stable RSN topographies using this
technique has had to rely on processing algorithms, such as in-
dependent component analysis (ICA), to isolate discrete sources
of signal in the data. Although this approach has delineated con-
sistent patterns of resting activity in healthy populations (4–6),
few validated methods exist to quantify and compare the expres-
sion of specific RSNs in individual subjects. Such measurements
are particularly relevant in the study of progressive neurodegen-
erative disorders, in which stereotyped abnormalities develop se-
lectively over time in one or another neural system (7). Indeed,
associations between new network topographies and previously
reported RSNs, particularly the DMN, have often been descriptive
(8–10). In this vein, seed-based functional connectivity measure-
ments have been used to delineate areas correlating with activity
profiles in a specific nodal region. Regions identified by this
method, however, may not exhibit the significant functional
intercorrelations that define connected brain networks (11).
Moreover, although it is known that regional RSN components
can be activated during task performance (12), quantitative tech-
niques are not available for the direct assessment of RSN activity

in individual subjects scanned in the resting state and under dif-
ferent task conditions.
In this study, we explored an alternative means of identifying

reliable network topographies in the resting state, without the
temporal variation in brain signals inherent to fMRI techni-
ques. In the mammalian brain, a substantial portion of resting
glucose consumption is dedicated to the support of synaptic
activity (13, 14). Thus, FDG PET may be used to map resting
brain function in a complementary manner to fMRI. Spatial
covariance analysis (15–17) was applied to resting-state meta-
bolic scans from healthy subjects to identify reliable normal
RSN topographies, which were then used to quantify pattern
expression in individual subjects on a prospective single scan
basis. These computations were used to validate the newly
identified RSNs in independent testing samples scanned at rest
or during task performance. Following validation, we used in-
dependent cohorts of Parkinson’s disease (PD) and Alzheimer’s
disease (AD) patients to determine whether normal metabolic
RSN topographies are maintained in the setting of ongoing
neurodegenerative pathology.

Significance

We present an innovative approach to evaluate default mode
network (DMN) activity in individual subjects using metabolic
imaging. After characterizing a distinct set of metabolic resting
state networks (RSNs) in healthy subjects, network activity was
tracked over time in patients with neurodegenerative disorders,
such as Parkinson’s disease and Alzheimer’s disease. We found
that the dominant normal metabolic RSN, which corresponded
to the DMN, is preserved in early-stage Parkinson’s disease
patients. Although significant DMN reductions developed later,
these changes were reversible in part by dopamine treatment.
This finding contrasts with Alzheimer’s disease, in which DMN
loss is rapid and continuous, beginning before clinical di-
agnosis. Metabolic imaging can provide a versatile, quantita-
tive means of assessing brain disease at the network level.
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Results
Metabolic RSNs: Identification and Spatial Correlation. Spatial co-
variance analysis of the resting-state metabolic scan data re-
vealed several RSN topographies that were common to the
healthy (NL1 and NL2) and disease (PD1) groups (Table S1,
Derivation sets). The first three principal component patterns
(PC1, PC2, PC3) for the NL1 and NL2 groups [NL1: n = 30,
male/female (M/F) 13/17, age 51.5 ± 14.3 y (mean ± SD); NL2:
n = 33, M/F 17/16, age 49.8 ± 20.7 y] are displayed in Fig. 1 A
and B. Voxel-wise correlation analysis of the corresponding
patterns from the two groups was conducted within an inclusive
gray matter mask and presented in descending order according
to eigenvalue. The dominant covariance PC1 topography accoun-
ted for 14.1% and 16.4% of the subject × voxel variance in the
respective derivation samples. The results showed significant
cross-correlations (Fig. 1) between the voxel weights on the cor-
responding topographies identified in the two healthy samples
(PC1: r2 = 0.61, P < 0.001; PC2: r2 = 0.52, P < 0.001; PC3: r2 =
0.40, P < 0.001; Pearson’s correlations over all voxels jzj > 0).
Correlations between noncorresponding topographies (e.g., NL1-
PC1 and NL2-PC2) were weak at best (0.003 < r2 < 0.14). In
addition, the expression scores of the PC1 patterns evaluated in
the derivation group and prospectively using the pattern derived
in the alternate NL group were highly correlated (NL1: r2 = 0.89,
P < 0.001; NL2: r2 = 0.9233, P < 0.001).
The first RSN identified in the two healthy groups (Fig. 1 A and

B, Left) was topographically similar to the DMN (Fig. S1A, Fig.
S2, Table S2), with relative metabolic increases in the posterior
cingulate, medial prefrontal cortex, and to some degree, in the
precuneus and lateral parietal association regions. In contrast, the
second and third metabolic RSNs in these groups (Fig. 1 A and B,
Center and Right) were characterized mainly by relative increases
in primary and auxiliary motor and sensorimotor cortical areas
(Fig. S1 A and B). Of note, NL1-PC2 (Fig. 1A, Center) involved
the supplementary motor area (SMA), postcentral gyrus, and
medial parieto-occipital cortex, whereas the NL1-PC3 (Fig. 1A,
Right) involved the SMA, anterior cingulate cortex, and the cer-
ebellar vermis. Similar metabolic topographies were observed for
the corresponding NL2-PC2 and PC3 patterns (Fig. 1B, Center

and Right). Data on specific relationships between these metabolic
RSNs and known functional topographies are presented as SI
Results. In aggregate, the correlational analysis indicates that the
major metabolic RSN topographies are replicable across healthy
volunteer groups. Moreover, the cross-correlation results sug-
gest that RSN hierarchy [i.e., topographical order based on
effect size (eigenvalue)] is similar for independent groups of
normal subjects.
We next determined whether the major metabolic RSNs

identified in healthy subjects—and their hierarchy—are altered
in the presence of a neurodegenerative process. To this end, we
analyzed scan data from PD1, a group of patients with mild-to-
moderate PD (PD1: n = 33, M/F 22/11, age 57.2 ± 8.2 y, disease
duration 9.2 ± 3.6 y). The first three metabolic RSNs identified
in this group are displayed in Fig. 1C. The second RSN in this
group (PD1-PC2), accounting for 12.4% of the subject × voxel
variance, topographically resembled the dominant RSN identi-
fied in the two normal groups. Significant correlations (Fig. 1)
were observed between voxel weights on this pattern and those
on NL1-PC1 and NL2-PC1 (r2 > 0.46 and r2 > 0.52 for the two
correlations, respectively). Correlations between voxel weights
on PD1-PC2 and those on PC2 and PC3 from either normal
group were not noteworthy (r2 < 0.19). Thus, the second meta-
bolic RSN identified in PD1 resembled NL1-PC1 (and the sim-
ilar NL2-PC1), the dominant resting-state topography seen in
healthy subjects. In contrast, the dominant metabolic RSN iden-
tified in this disease group (PD1-PC1) was represented by an
abnormal topography that was not similar to the patterns derived
in either of the healthy volunteer samples. Voxel weights on this
pattern were at most marginally related (r2 < 0.18) to those on
the first five PCs identified in the analysis of either NL1 or NL2
subjects. This RSN (Fig. 1C, Left), which accounted for 23.1% of
the subject × voxel variance, topographically resembled (r2 > 0.8,
P < 0.001) the PD-related metabolic covariance pattern (PDRP),
a metabolic network that is consistently expressed in patients
with this disorder (15, 18, 19). Similarly, PD1-PC1 expression
was elevated in PD patients and low in healthy subjects, making
it an accurate discriminator of PD subjects (e.g., P = 1.2e−7 for
PD1 vs. NL2 subject scores, Student’s t test).

Fig. 1. Metabolic RSNs identified in (A and B) two
groups of healthy volunteer subjects (NL1 and NL2)
and (C) a group of patients with mild-to-moderate
Parkinson’s disease (PD1). Region weights (loadings)
on each spatial covariance pattern topography are
displayed in orthogonal views through the origin of
Montreal Neurological Institute (MNI) space (sagittal
X = 0 mm, coronal Y = 0 mm, axial Z = 0 mm). The
color stripe represents voxel weights on each to-
pography thresholded at jzj > 0.5. Arrows indicate
significant pairwise correlations (r2 ≥ 0.40, P ≤ 0.001)
between nonzero voxel weights (jzj > 0) on the two
patterns within a common gray matter mask.
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RSN Activity During Task Performance. Expression values for each
metabolic RSN were computed in H2

15O PET scans acquired in
a nonmovement resting state (REST) and during the perfor-
mance of the kinematically equivalent motor execution (MOVE)
and motor sequence learning (LEARN) tasks. We first con-
firmed that RSN expression values computed in the resting H2

15O
PET scans correlated closely with corresponding measurements
from FDG PET scans obtained in the same subjects (r2 = 0.74,
P < 0.001) (Fig. S3). Expression of each metabolic RSN was then
computed in the H2

15O PET scans obtained in the REST,
MOVE, and LEARN conditions in 14 healthy volunteer subjects
(NL3: M/F 8/6, age 45.5 ± 16.5 y) and 13 unmedicated early stage
PD subjects (PD2: M/F 10/3, age 58.0 ± 10.0 y, disease duration
2.6 ± 1.9 y) (Table S1, Activation studies). Consistent relation-
ships (Fig. 2 A and B) between changes in experimental condi-
tion and RSN expression were present in the two groups [NL3:
F(4, 52) = 32.3; PD2: F(4, 48) = 18.1, P < 0.001; task × network
interaction effect, repeated-measures ANOVA (RMANOVA)].
Specifically, significant changes in NL1-PC1 expression (Fig. 2 A
and B, Left) were observed across the three conditions in both
groups [NL3: F(2, 26) = 21.292, P < 0.001; PD2: F(2, 24) = 17.890,
P < 0.001; one-way RMANOVA], with reductions in network ac-
tivity during the performance of either task (P < 0.001 for MOVE
and LEARN relative to REST; post hoc Bonferroni tests). Mea-
surements of NL1-PC1 expression during the MOVE and LEARN
tasks did not differ in either of the two groups (P = 1.0). NL1-PC1
deactivation responses in early-stage PD (Fig. 2B, Left) did not
differ from normal [group × task interaction effect: F(2, 50) = 0.803,
P = 0.454; 2 × 3 RMANOVA]. In contrast, NL1-PC2 and NL1-PC3
expression increased during task performance in the two groups
(P < 0.001; one-way RMANOVA). As expected, based on the to-
pographic similarity of PD1-PC2 to NL1-PC1 (Fig. 1), significant de-
activation of the former network was observed during both MOVE
and LEARN task performance (P < 0.001 relative to REST; post
hoc Bonferroni tests) (Fig. 2C, Center). Moreover, at the subject
level deactivation responses for PD1-PC2 correlated closely with
those for NL1-PC1 [MOVE–REST: r2 = 0.73, P < 0.0001, LEARN–
REST: r2 = 0.79, P < 0.0001 (n = 13); Pearson’s correlations].

Task-Related RSN Modulation in PD: Natural History and Treatment
Effects. Expression values for the three major normal metabolic
RSNs (NL1-PC1, -PC2, and -PC3) were computed in H2

15O PET

scans from a group of 14 later-stage PD patients (PD3: M/F 11/3;
age 57.6 ± 7.6 y; disease duration 11.7 ± 4.9 y). These subjects
(Table S1, Activation studies) were scanned at rest and during
task performance in the baseline unmedicated (off) state and in
the treated (on) state during intravenous levodopa administra-
tion. In the unmedicated state, NL1-PC1 values for these sub-
jects (Fig. 3A) did not change significantly across conditions
[F(2, 26) = 2.282, P = 0.122; one-way RMANOVA]. This differed
[F(2, 50) =7.555, P = 0.001; group × task interaction effect, two-way
RMANOVA] from the robust task-related deactivation seen
in early PD (Fig. 2B, Left), in which significant NL1-PC1 de-
activation was present during both movement and learning (P <
0.002, MOVE and LEARN relative to REST; post hoc Bon-
ferroni tests). Thus, significant network deactivation during
movement was not present in later-stage PD3 patients scanned in
the unmedicated state (P = 1.0 for MOVE relative to REST;
post hoc Bonferroni tests). Indeed, in these subjects, mean

Fig. 2. Metabolic RSN expression values measured
at rest (REST) and during motor execution (MOVE)
and motor sequence learning (LEARN) in H2

15O PET
scans from (A) healthy subjects (NL3) and (B) early-
stage PD patients (PD2). In both groups, NL1-PC1
expression (Left) was consistently reduced (deacti-
vated) during task performance relative to the non-
movement resting state. Analogous deactivation
responses were seen in the early PD group for PD1-
PC2 (C, Center), the second metabolic RSN identified
in the PD1 derivation group. The other metabolic
RSNs identified in healthy subjects (A and B, Center
and Right) or in PD patients (C, Left and Right) ex-
hibited consistent increases in expression (activa-
tion) during task performance. Significance levels
(horizontal arrows) were determined by RMANOVA
with post hoc Bonferroni tests.

Fig. 3. (A) Task-related NL1-PC1 deactivation responses were not observed
in unmedicated patients with advanced PD who were scanned with H2

15O
PET at rest (REST) and during motor execution (MOVE) and sequence
learning (LEARN) task performances. This finding contrasted with corre-
sponding measurements in early stage-PD subjects (Fig. 2B, Left) in whom
significant deactivation was observed during both movement and learning.
(B) Network deactivation was partially restored when the same patients
were rescanned on levodopa treatment. Significance levels (horizontal
arrows) were determined by RMANOVA with post hoc Bonferroni tests.
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NL1-PC1 expression values were similar for the movement and
rest conditions (Fig. S4, intersecting lines) when measured in the
absence of drug. Although NL1-PC1 motor deactivation was
significantly reduced in the unmedicated PD3 group relative to
early stage PD and healthy control subjects [PD3 vs. PD2: F(1, 25) =
17.717, P < 0.001; PD3 vs. NL3: F(1, 26) = 15.509, P < 0.001,
group × task interaction effects; 2 × 2 RMANOVA], this re-
sponse was partially restored (Fig. 3B) by dopaminergic treatment.
Specifically, levodopa acted to increase resting RSN expression
toward normal (Fig. S4), while reducing the level of network
activity recorded during movement. Thus, task-related network
modulation was improved by levodopa [F(1, 13) = 9.461, P = 0.009;
treatment × task interaction, RMANOVA], with greater net-
work deactivation responses with treatment [(MOVE–REST)ON =
−2.175 ± 0.579 (mean ± SE), P = 0.007] relative to the unmedicated
state [(MOVE–REST)OFF = 0.025 ± 0.593, P = 1.0]. In aggre-
gate, this resulted in an increase in the magnitude of the motor
deactivation response (Fig. S4, vertical dashed arrows) toward
normal levels [(MOVE–REST)NL = −3.955 ± 0.8186, P < 0.001].
Levodopa treatment had an analogous effect on NL1-PC1 de-
activation during learning performance.

Metabolic RSNs in the Study of Neurodegenerative Disorders.
Parkinson’s disease. Resting NL1-PC1 expression was measured in
a group of early-stage PD subjects (n = 15, M/F 11/4, age 58.0 ±
10.2 y, disease duration <2 y) who were scanned longitudinally

with FDG PET at baseline, 2 y, and 4 y (Table S1, PD testing
sets). The resulting values were compared with corresponding
measurements from a group of healthy volunteer subjects (n = 15,
M/F 8/7, age 55.8 ± 8.8 y) scanned at a single time point.
Network expression in the PD progression cohort (Fig. 4B, gray
bars) did not differ significantly from control values at any of the
longitudinal time points (P > 0.13; Student’s t tests). A declining
trend in NL1-PC1 expression was noted over time in the patient
group, albeit not reaching significance [F(2, 23) = 2.60, P = 0.10;
one-way RMANOVA]. In a group of more advanced PD patients
(n = 15, M/F 8/7, age 56.7 ± 12.4 y, disease duration >5 y) with
mild cognitive impairment network values (Fig. 4B, black bar) were
reduced relative to healthy subjects (P < 0.01, Student’s t test).
The time course of NL1-PC1 expression in early PD patients

differed significantly from that for the abnormal PDRP network
[network × time interaction effect: F(2, 23) = 5.88, P < 0.01; two-
way RMANOVA]. PDRP expression in the early PD cohort (Fig.
4A, gray bars) was significantly elevated at baseline (P < 0.05) and
at each of the subsequent time points (P < 0.001, compared with
the age-matched healthy subjects; Student’s t tests), with pro-
gressively increasing values over time [F(2, 23) = 12.73, P < 0.0005;
one-way RMANOVA]. PDRP expression in the cognitively im-
paired PD group (Fig. 4A, black bar) was further elevated relative
to healthy controls (P < 0.001, Student’s t test).
Alzheimer’s disease. Progressive changes in resting NL1-PC1 ex-
pression were also assessed in early-stage AD patients (n = 40,
M/F 23/17, age 75.7 ± 6.3 y, disease duration 4.4 ± 2.6 y) and
healthy volunteer subjects (n = 40, M/F 23/17, age 75.9 ± 4.6 y)
scanned longitudinally with FDG PET as part of the Alzheimer’s
Disease Neuroimaging Initiative (Table S1, AD testing set). In
both groups, network expression was measured at baseline, 6 mo,
12 mo, and 24 mo. Network expression in the healthy cohort
(Fig. 4D) did not change significantly over time [F(3, 117) = 1.21,
P = 0.31, one-way RMANOVA)]. In contrast, in the AD group
NL1-PC1 expression (Fig. 4C) was significantly reduced at each
time point (baseline, 6 mo, and 12 mo: P < 0.05, 24 mo: P < 0.01,
Student’s t tests with respect to normal baseline values). In
contrast to the healthy subjects, the AD patients exhibited a
progressive decline in network expression over time [F(3, 117) =
9.67, P < 0.0001; one-way RMANOVA]. Thus, in contrast to PD,
AD patients exhibit progressive loss of the DMN-like metabolic
network beginning early in the natural history of the disorder.

Discussion
In this study, we used a comparatively simple spatial covariance
technique to isolate stable, functionally relevant RSN topo-
graphies, resembling in some basic features those described
previously with resting-state fMRI using fundamentally different
methodology. For fMRI networks typically derived from tem-
poral correlation in fluctuations of a small-frequency band of
time-dependent data, the variance contribution to the total sig-
nal may be negligible. Temporo-spatial fluctuations are absent in
the metabolic imaging data because of the time averaging in-
herent in PET image acquisition. The findings therefore suggest
that these networks represent patterns of regional covariation
that involve a greater portion of resting-state neuronal activity
than previously appreciated. By analyzing total metabolic activ-
ity, we identified a set of orthogonal, spatially overlapping net-
works that describe multifunctional, reproducible components of
brain function in the resting state. Thus, the dominant metabolic
RSN in healthy subjects, exemplified by NL1-PC1, shared prom-
inent features with previously reported fMRI-based DMN topo-
graphies, although the technique of network derivation was
notably different for the two imaging modalities. Even so, the
PET-derived metabolic network was consistently deactivated
during task performance, with few—if any—exceptions at the
individual-subject level. The presence of stereotyped task-related
deactivation responses for NL1-PC1 suggested that this RSN

Fig. 4. Z-scored expression values are displayed for (A) the abnormal PDRP
measured in 15 early-stage PD patients (gray bars) scanned longitudinally
with FDG PET at baseline, 24 mo, and 48 mo, and (B) the dominant metabolic
RSN identified in healthy subjects (NL1-PC1). In A and B, expression values
for the two networks are also displayed for 15 later-stage PD patients of sim-
ilar age with mild cognitive impairment (black bars) and 15 age-matched
healthy volunteer subjects (white bars). The two networks exhibited differ-
ent time courses in members of the early-stage longitudinal PD cohort (P <
0.01, network × time interaction effect; RMANOVA). Significant increases in
PDRP expression were present over time in these subjects (main effect of
time: P < 0.0005; one-way RMANOVA), without concurrent change in NL1-
PC1 expression (P = 0.12). NL1-PC1 expression was reduced, however, in the
later-stage PD subjects with cognitive impairment (P < 0.01; Student’s t test
with respect to normal control values). (C) NL1-PC1 z-scored expression
values in 40 early-stage AD patients (black bars) scanned with FDG PET at
baseline, 6, 12, and 24 mo and (D) 40 normal (NL) subjects (white bars). Al-
though NL1-PC1 expression did not change over time in healthy subjects (P =
0.31, one-way RMANOVA), a progressive decline in this measure (P < 0.0001)
was present in the AD group. In the AD group, a significant reduction in the
expression of this network was present at each time point (P < 0.05, Stu-
dent’s t tests with respect to normal baseline values). *P < 0.05, **P < 0.01,
***P < 0.001, Student’s t tests. Error bar represents SE.
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may have particular utility as a stable quantitative descriptor of
DMN activity in neurodegenerative disorders. It should be noted
that deactivation of the metabolic patterns refers to the modu-
lation of the pattern score that is evaluated over the entire brain
and not within individual regions, as typically performed in fMRI
analysis. The fraction of the total activity measured within a re-
gion that is contributed by a particular pattern is proportional to
the product of the subject’s expression of the pattern and the
sum of the pattern’s unit-normalized regional voxel weights.
Although highly weighted regions may have a greater influence
on pattern score, regional values alone are not as predictive as
whole covariance pattern expression in performance measures.
In addition to loss of normal DMN activity, the earliest stages

of neurodegenerative illnesses are often associated with in-
creasing expression of independent, abnormal disease-related
metabolic networks (15, 18, 20, 21). Using our approach, we
directly compared the time course of the changes in normal and
pathological network activity that occur in patients with these
disorders. The utility of this analytical strategy is highlighted by
the PD findings. We found that the normal DMN-like topogra-
phy was expressed in subjects with mild-to-moderate disease
[represented by PD1-PC2, 12.4% “variance accounted for”
(vaf)]. Nonetheless, this RSN was now subordinated to an ab-
errant (orthogonal) disease-related pattern (PD1-PC1, 23.1%
vaf) not expressed in healthy subjects. Considering that the av-
erage vaf attributed to any one PC decreases with the number of
subjects, the independent DMN-like component (PD1-PC2) was
represented proportionally for sample size (n = 33): about half of
the contribution of the disease pattern (PD1-PC1) and slightly
less than vaf measures for the DMN observed in normal groups
of similar size. Indeed, resting NL1-PC1 expression (and NL2-
PC1, similarly) did not differ from normal in early-stage PD
subjects scanned using either cerebral blood flow or metabolic
imaging techniques (Figs. 2 A and B, and 4B, gray bars). In
contrast, resting expression of this RSN was significantly reduced
in unmedicated later-stage patients scanned using one or the
other technique (Figs. 3A and 4B, black bar). Overall, differences
in disease stage and treatment status may explain the incon-
sistency of prior studies of DMN connectivity and task-related
deactivation in PD subjects (22–24). Partial restoration of these
responses occurred following levodopa administration (Fig. 3B
and Fig. S4), perhaps through enhanced dopaminergic neuro-
transmission in mesolimbic pathway (25, 26).
One would generally not expect the network architecture of

the brain to remain intact in the setting of a progressive neuro-
degenerative process (7). We note that continuing increases in
the expression of disease-related metabolic RSNs, such as PDRP
(Fig. 4A) have been observed in individuals scanned 10–15 y
after diagnosis (18, 27, 28). The present findings suggest that
these changes occur in parallel with progressive loss of normal
RSN functioning (Fig. 4B). In this vein, the NL1-PC1 topography
accounted for 10.1% in the baseline scans of the early-stage
longitudinal PD cohort. Nonetheless, this network accounted for
only 6.0% of the variance in the more advanced PD-mild cog-
nitive impairment group. (The corresponding percentage of vaf
values for NL2-PC1 were 10.0% and 6.9% for the two groups,
respectively.) We also found that levodopa can partially restore
DMN function in moderately advanced PD patients (Fig. 3B and
Fig. S4). In earlier work, we found an association between the
effect of levodopa on parkinsonian motor symptoms and con-
current reductions in PDRP expression (18, 29, 30). Indeed,
clinically effective levodopa treatment lowered PDRP expression
(P < 0.02; paired Student’s t test) in resting metabolic images
from PD3 patients scanned at baseline and with medication.
NL1-PC1 “restoration” under these circumstances was modest,
however; the normal RSN topography accounted for 6.2% of the
subject × voxel variance in the baseline data and 6.9% with
treatment. (The corresponding values for NL2-PC1 were 5.4%

and 6.1% vaf for the two treatment conditions.) It is likely that
with advancing neurodegeneration, connectivity within and be-
tween the normal RSNs is further compromised with irreversible
loss-of-network functioning. Beyond that point, manipulation of
pathological networks is not expected to affect normal RSN
functioning in a meaningful way.
The situation in AD is somewhat different in that significant

reductions in NL1-PC1 expression were already present at the
time of diagnosis (Fig. 4C). Indeed, the present findings are fully
in line with resting fMRI studies demonstrating DMN abnor-
malities at the earliest clinical stages of the disorder (31, 32).
Nonetheless, the loss of NL1-PC1 expression at diagnosis in AD
patients, although greater than analogous changes observed
in early PD, was modest in size (between 1.0 and 1.5 SD below
the normal mean), particularly given the degree of cognitive
impairment that was observed in these individuals. Of note, AD is
also associated with a characteristic disease-related metabolic
covariance pattern topographically distinct from the DMN, which
is expressed in early-stage patients but not in healthy subjects (15,
33). In contrast to the PDRP, the pathological AD network
shares several regions with the NL1-PC1 topography, a cause
perhaps for the early DMN changes seen in this disorder. Notably
little deterioration of DMN expression over time was observed in
healthy subjects (Fig. 4D). The longitudinal relationship between
normal and disease-related RSNs in different neurodegenerative
conditions, and their respective roles in the natural history of
these disorders, is a topic of ongoing investigation.
The present work illustrates the use of glucose metabolic im-

aging to assess RSN function under normal and pathological
conditions. Distinct replicable topographies were identified that
are also physiologically different in regard to task-related net-
work activation responses including NL1-PC1 deactivated by
task and NL1-PC2 and NL1-PC3 activated by task. A recent
experimental rat study demonstrated the presence of several
similar network topographies in healthy animals scanned simul-
taneously with FDG PET and fMRI (34). Analogous covariance
patterns have also been reported following the application of
ICA to imaging data from healthy human subjects scanned in the
resting state with both modalities (10). However, in contrast to
the present findings, a DMN-like topography was not identified
when ICA was applied to this FDG PET dataset. Metabolic
imaging may be sensitive to the distinct patterns of resting neural
activity and energy consumption reported in DMN areas (35).
Whether the changes in local cerebral function seen in these
regions reflect the activity of a single brain network depends on
the criteria for statistical independence used in the underlying
models, which differ considerably for ICA and principal compo-
nent analysis (PCA). Indeed, in the present study, reproducible
DMN topographies were identified in resting FDG PET data
from several independent populations using a simple PCA-based
algorithm. A better understanding of how such metabolic RSNs
relate to traditional electrically defined networks may be achieved
by correlating multimodal network measurements with local field
potentials in experimental animal models.

Methods
A more detailed description of the methods used in this study is provided in SI
Methods. The Scaled Subprofile Model (SSM-PCA) (36, 37) was used to identify
significant resting-state metabolic PC topographies of spatial covariance in
two independent NL groups and a PD group (NL1, NL2, PD1) (Table S1, Deri-
vation sets) using ScanVP software (www.feinsteinneuroscience.org). The hi-
erarchy of these PC RSNs is established by the decreasing order of the
magnitude of their eigenvalue corresponding to the decreasing relative value
of the vaf in the data. Thus, the entire dataset analysis is usually reduced to
only the first one to five prominent PCs corresponding to normal networks or
disease components. The correlation of patterns derived in the independent
derivation groups was evaluated as the magnitude (r2) and corresponding
P value of the voxel-wise Pearson product–moment correlation of the two
image-weight vectors computed over all nonthresholded voxels (jzj > 0). For
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voxel-wise correlations between topographies, P values were computed in-
corporating a correction for spatial autocorrelation effects as described pre-
viously (38). Furthermore, to validate the correlation of the expression of the
two primary normal patterns, we measured the correlation of derivation
scores in each normal group with prospective scores for the same group using
the alternate normal cohort pattern.

The relationship of the primary metabolic RSN to previous fMRI-based
descriptions of the topography of the DMN (39, 40) was examined by local-
izing within each PC image the primary nodes of the DMN derived in an fMRI
consensus study using the published Talairach coordinates: medial prefrontal
cortex (mPFC: 1 40 16), left and right lateral parietal areas (LatParL: −45 −67
26, LatParR: 53–65 26), and the posterior cingulate cortex (pCC: −1 −50 26).
The reliability of the voxel weights on each RSN was mapped by the inverse
coefficient of variation (ICV) determined by bootstrap resampling (500 iter-
ations) of the derivation data for each topography (33, 41). Thresholded ICV
values at jzj > 2.0 correspond to a significance level of P < 0.03.

Using the SSM-PCA model, prospective expression of each pattern was
computed individually as a scalar score for each subject in different experi-
mental groups for conditions of activation under movement (Table S1, Ac-
tivation studies) and in degenerative conditions of PD (Table S1, PD testing
sets) and AD (Table S1, AD testing set). RSN expression during task perfor-
mance in H2

15O PET scans was obtained separately for a simple motor exe-
cution task (MOVE), a kinematically matched motor sequence learning task
(LEARN), and in an eyes-open resting state (REST) for independent sets of
healthy subjects (NL3) and unmedicated early stage PD patients (PD2). In
addition, more advanced PD subjects (PD3) were scanned with H2

15O PET
during task performance while off and on intravenous levodopa treatment.

Longitudinal studies of Parkinson’s disease were performed for FDG data
(Table S1, PD testing sets) of early stage subjects scanned at baseline, and
again 24 and 48 mo later and compared with healthy and advanced PD
subjects. Expression of the major normal pattern NL1-PC1 was compared with
the expression of the known PD disease pattern, PDRP. For the AD study,

expression of the major normal pattern was compared in healthy and AD
subject data obtained from the multicenter Alzheimer’s Disease Neuroimaging
Initiative database (ida.loni.usc.edu/login.jsp) at baseline, and 6, 12, and 24 mo
later (Table S1, AD testing set). RSN expression in patients and controls was
z-scored with respect to corresponding values from the NL1 derivation group.

Statistical analysis was performed using SPSS 13.0 for Windows (SPSS Inc.).
Comparisonswere considered significant for P < 0.05, two-tailed. Differences in
RSN expression (subject scores) were compared across groups using Student’s t
test or ANOVA. Comparisons of RSN expression values across groups and ex-
perimental conditions, as well as group × condition interaction effects, were
assessed using RMANOVA with post hoc Bonferroni tests. RMANOVA was also
used to compare longitudinal changes in the expression of normal and disease
patterns (e.g., NL1-PC1 vs. PDRP) in the same subjects. To avoid network effects
referable solely to subject score sign, we multiplied expression values for the
normally decreasing RSN patterns by −1. Thus, expression for normal and
disease-related RSNs in individual subjects were modeled as moving longitu-
dinally in the same direction (i.e., progressively increasing with respect to the
control mean) but with potentially different trajectories over time.
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